2015
DOI: 10.1016/j.neuroscience.2015.08.004
|View full text |Cite
|
Sign up to set email alerts
|

Developmental alterations in noxious-evoked EEG activity recorded from rat primary somatosensory cortex

Abstract: A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. AbstractPrimary somatosensory cortex (S1) contains a nociceptive map that localizes potential tissue damage on the body and encodes stimulus intensity. An objective and specific biomark… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
8
0
1

Year Published

2016
2016
2023
2023

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 17 publications
(9 citation statements)
references
References 52 publications
0
8
0
1
Order By: Relevance
“…Gamma coherence has been associated with inter-regional communication within the brain, otherwise known as communication through coherence (Buzsáki and Draguhn 2004), but since the neural origins of the gamma oscillations recorded here is not known, the proposal that increases in gamma energy signals the beginning of long distance communications in pain networks should be viewed with caution (Buzsáki and Schomburg 2015). An increase in theta energy has been reported in awake adult rat somatosensory cortex following both capsaicin application to the skin and chronic nerve injury (LeBlanc et al 2014, 2016b) and also after noxious thermal skin stimulation in anaesthetized adult rats (Devonshire et al 2015). Theta and gamma energy, if comparable to human EEG data, could reflect the maturation of sensorimotor transformation of pain (Schulz et al 2012) or increased attentional processing and enhanced saliency of pain-related signals (Hauck et al 2007) as well as subjective pain intensity (Zhang et al 2012; Dufort Rouleau et al 2015).…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Gamma coherence has been associated with inter-regional communication within the brain, otherwise known as communication through coherence (Buzsáki and Draguhn 2004), but since the neural origins of the gamma oscillations recorded here is not known, the proposal that increases in gamma energy signals the beginning of long distance communications in pain networks should be viewed with caution (Buzsáki and Schomburg 2015). An increase in theta energy has been reported in awake adult rat somatosensory cortex following both capsaicin application to the skin and chronic nerve injury (LeBlanc et al 2014, 2016b) and also after noxious thermal skin stimulation in anaesthetized adult rats (Devonshire et al 2015). Theta and gamma energy, if comparable to human EEG data, could reflect the maturation of sensorimotor transformation of pain (Schulz et al 2012) or increased attentional processing and enhanced saliency of pain-related signals (Hauck et al 2007) as well as subjective pain intensity (Zhang et al 2012; Dufort Rouleau et al 2015).…”
Section: Discussionmentioning
confidence: 99%
“…The increasing complexity of S1 nociceptive evoked activity over the first four postnatal weeks in anesthetized pups suggests considerable network maturation in the first 3–4 weeks of life (Thairu 1971; Chang et al 2016), a proposal that is supported by the changing energy and power of S1 oscillating signals within different frequency bands following noxious stimulation in pups under anesthesia (Devonshire et al 2015; Chang et al 2016). However, anesthesia alters cortical activity in an age-dependent manner (Granmo et al 2013; Sitdikova et al 2014; Chang et al 2016) and a full understanding of the maturation of pain experience requires brain recording in awake animals.…”
Section: Introductionmentioning
confidence: 99%
“…Nociceptive event-related potentials (nERP) are still not fully mature at term and are qualitatively different from those in adults, with neonates exhibiting different frequency patterns encoding noxious events ( Fabrizi et al., 2016 ) and a more widespread fMRI blood oxygen level dependent (BOLD) response following pinprick stimulation ( Goksan et al., 2015 ; Williams et al., 2015 ). Data from infant rodents has further demonstrated the postnatal maturation of cortical nociceptive processing, with nociceptive-evoked cortical activity changing in frequency content and power with age ( Chang et al., 2016 ; Devonshire et al., 2015 ).…”
Section: Introductionmentioning
confidence: 99%
“…四个子区域 (Cerkevich, Qi, & Kaas, 2014),并且存在着与潜在的组织损伤和刺激强度相对应的空间分布 (Devonshire, Greenspon, & Hathway, 2015)。S1 内不同的子区域有一定的分工:3b 区主要对刺激的形状、 大小、性质进行加工,1 区主要对刺激的性质进行加工,2 区主要与刺激的大小和形状的加工有关 (Vierck et al, 2013)。近年来,在对动物与人的研究中,大部分观点支持 S1 参与疼痛编码过程,包括对疼痛刺激 的位置、强度和性质的编码,但对此仍然存在一定的争议 (Vierck, Whitsel, Favorov, Brown, & Tommerdahl, 2013;Talbot et al, 1991;Xie, Huo, & Tang, 2009)。这一部分主要从动物研究、人的脑成像研究两个方面就 S1 是否对疼痛刺激的部位、强度和性质进行编码展开讨论。 3.1. S1 参与刺激位置的编码过程 不同身体部位的疼痛刺激会激活不同的 S1 区域,如来源于皮肤的疼痛刺激一般激活 S1 的内侧(3b (Dykes, Metherate, & Tremblay, 1990)。Follett 等 人通过施加不同等级的内脏痛(直结肠扩张)和经皮刺激对大鼠 S1 区神经元的活动进行了研究,结果表明 S1 中有 115 个神经元表现出自发活动, 其中 66 个对不同等级的直结肠扩张作出反应 (Follett & Dirks, 1994)。 直结肠扩张发生时促进了 S1 中 33%的神经元活动及抑制了 S1 中 52%的神经元活动,15%的神经元表现 为促进与抑制反应的混合,经皮刺激与直结肠扩张引起的 S1 神经元活动有 71%的一致性,这些数据表明 S1 神经元参与对内脏伤害性刺激及经皮刺激的编码 (Follett & Dirks, 1994)。此外,Reed 等人在猴子的手 部植入 100 根电极, 发现刺激手的不同部位会影响其相应的 S1 亚区神经元的同步放电 (Reed et al, 2012) )。这表明 S1 在对疼痛部位的编码中发挥重 要的作用。Talbot 等人采用 PET 技术的研究发现,当对被试的一侧手臂施加热刺激时其对侧的 S1 有显 著的活动 (Talbot et al, 1991)。这与 S1 的交叉投射规律(即一侧体表感觉向对侧投射)相符 (Tommerdahl, Favorov, & Whitsel, 2010)。同理,Andersson 等人采用 PET 技术发现在被试的足背以及手背皮内注射辣 椒素会引起 S1 不同亚区的反应 (Andersson et al, 1997)。一项 EEG 与 MEG 的研究发现,使用 红外激光 (thulium-YAG)刺激被试的手背和足背诱发疼痛时,被试手背对应的 S1 区比足背对应的 S1 区有更显著的 激活,这表明 S1 参与对疼痛刺激部位的编码 (Treede et al, 1999) (Casey et al, 1996)。目前大部分观点认为 S1 能对刺激的性质进行编码,如当患者 的 S1 区出现缺血性损伤时,其很难准确的辨认出伤害性刺激的性质,也不能准确的辨认疼痛刺激与非疼 痛刺激,当医生要求其使用"针刺样疼痛""轻度痛""钝痛""烧灼痛"等词描述当下呈现的刺激时, 这类病人往往难以准确的表达 (Ploner, Schmitz, Freund, & Schnitzler, 1999)。但是由于被试的感知、刺激的 持续时间和方式等方面的差异,无法对包含不同性质疼痛刺激的研究进行准确的比较,所以现有研究在 探讨 S1 对刺激性质的编码时还存在一定的争议。 大量动物研究就 S1 是否参与对疼痛刺激性质的编码这一问题已经得出一致的结论,即 S1 参与了对 疼痛刺激性质的编码。 如 Murrel 等使用 EEG 技术, 比较了大鼠在接受不同性质的伤害性刺激(机械刺激、 热刺激、电刺激)时其 S1 区的激活情况,发现不同性质的刺激呈现时 S1 表现为不同程度的激活,这表明 S1 参与了对刺激性质的编码 (Murrell et al, 2007)。因此,非灵长类动物的 S1 区也能分辨出不同性质的刺 激,即参与对刺激性质的编码。Chen 等人使用细胞外记录方法,研究了非伤害性刺激、伤害性热刺激及 李钻,陈伟海 伤害性机械刺激作用于松鼠猴的脚掌末端时 S1 区的反应,发现不同性质的刺激会诱发 S1 区不同的激活 模式,即疼痛刺激激活了 S1 的 3a、3b 和 1 区,而非疼痛刺激激活了 S1 的 3b 和 1 区,而伤害性热刺激 与伤害性机械刺激会诱发 S1 区显著不同的激活模式, 即 S1 的三个区域均参与对伤害性机械刺激的编码, 而 3a 和 1 区参与对伤害性热刺激的编码 (Chen, Friedman, & Roe, 2009)。这表明非人灵长类动物的 S1 区 对不同性质的刺激也表现出不同的反应,即非人灵长类动物的 S1 区参与对刺激性质的编码。综上,不管 是非人的灵长类动物还是非灵长类动物的研究都明确了 S1 在刺激性质编码中的重要作用。 就 S1 是否参与对疼痛刺激性质的编码这一问题,采用 fMRI,PET,EEG 和 MEG 等脑影像技术在 人类被试中的研究并没有得出一致的结论。 一些研究表明不同性质的疼痛刺激可诱发 S1 不同亚区的显著 性激活。如 Casey 等人采用 PET 技术比较了伤害性冷刺激和伤害性热刺激呈现时,S1 区 rCBF 的变化, 结果显示,与伤害性热刺激相比,伤害性冷刺激能诱发 S1 区的 rCBF 显著地增加,并且使被试产生更高 的不愉悦度 (Casey et al, 1996)。神经电生理研究发现,与非伤害性刺激相比,伤害性刺激诱发的细胞放 电频率更小,并且伤害性刺激诱发的 S1 的激活主要在 3a 区和 1 区的边缘,而非伤害性刺激引起的 S1 的 激活主要在 1 区和 3b 区的边缘 …”
Section: 国际疼痛协会(Iasp)将疼痛定义为"一种不愉快的感觉和情绪体验",这清晰地表明疼痛是一种既unclassified