In the brains of male zebra finches (Taeniopygia guttata), the nuclei that direct song learning and production are larger than the corresponding regions in females, who do not sing. The dimorphism in Area X of the medial striatum (MSt), an area important for song learning, is even more dramatic in that it is identifiable in males but not females by Nissl stain. In the present study, conspecific song, but not other auditory stimuli, induced expression of the immediate early gene ZENK in the MSt surrounding but not within Area X in juvenile males (30 and 45 days post-hatch). ZENK immunoreactivity following conspecific songs was homogeneous throughout the MSt of females at the same ages. Little to no FOS immunoreactivity was observed in Area X or the rest of the MSt, and levels were not influenced by the type of auditory stimulus presented. Thus, the clear morphological difference in the lateral MSt (Area X) of males and females is mirrored by a specific functional one, and the data suggest a role for ZENK expression in the MSt outside of Area X in responding to relevant song stimuli.
KeywordsSong perception; Immediate early gene; Area X; Basal ganglia; Song learning; Sex difference Nottebohm and Arnold [23] first described dramatic sexual dimorphisms in the brains of adult zebra finches and canaries wherein regions that control song learning and production are larger in males that sing than in females that do not. One of these regions, Area X of the medial striatum (MSt), is not identifiable via Nissl stains in females. Area X plays an integral role in male song learning and possibly song production in adulthood. For example, juvenile males with Area X ablated produce abnormal song in adulthood, although in adult males lesions of the nucleus have no detectable effect on song production or quality [26,31]. Interestingly, neurons in Area X show singing-related electrophysiological activity that declines slowly after song stops being produced [11], suggesting a function for the region outside of the sensitive period for song learning. Cells in this region in both juveniles and adults also display longterm potentiation [7]. In birds that hear song and sing in response, ZENK expression is increased in Area X compared to birds that hear song only or birds that hear no song [13][14][15]24]. Additionally, when the tracheosyringeal nerve is axotomized in developing males, the electrophysiological activity of some neurons within Area X is then tuned to the abnormal, axotomized bird's own song as well as the tutor's song, suggesting that neurons within Area X are important for vocal practice [32]. In males, the Nissl-defined volume of Area X increases between d10 and d40, when the adult volume is reached [20], and this change in volume is due in part to the addition of neurons during that period in males but not females [16,21].While it is clear that Area X is highly sexually dimorphic and important for the development of song in males, it was unknown whether the corresponding lateral region of MSt in females is resp...