Genes are not expressed in isolation any more than social behavior has meaning outside of society. Both are in dynamic flux with the immediate environment that the gene/individual finds itself, which in turn establishes the timing, pattern, and conditions of expression. This means that complex behaviors and their genetic underpinnings should be viewed as a cumulative process, or as the result of experiences up to that point in time and, at the same time, as setting the stage for what will follow. The evidence indicates that as experiences accumulate throughout life, early experiences shape how genes/individuals will respond to later experiences, whereas later experiences modify the effects of these earlier experiences. A method of graphically representing and analyzing change in gene and neural networks is presented. Results from several animal model systems will be described to illustrate these methods. First, we will consider the phenomenon of temperature-dependent sex determination in reptiles. We will illustrate how the experience of a particular temperature during a sensitive period of embryogenesis sculpts not only the patterns of expression of genes involved in sex determination and gonadal differentiation but also the morphological, physiological, neuroendocrine, and behavioral traits of the adult phenotype. The second model system concerns the effects of the sex ratio in the litter in rats, and the genotype ratio in the litter of transgenic mice, on the nature and frequency of maternal care and how this in turn influences the patterns of activation of identified neural circuits subserving the offspring's sociosexual behavior when it is an adult.