A study with multiple exposure groups and large group sizes was performed to establish whether exposure to 60-Hz electric fields would result in reproductive and developmental toxicity. A response model was developed from previous results and tested in groups of rats exposed to electric fields at various field strengths. Female rats were mated, and sperm-positive animals randomly distributed among four groups: sham-exposed or exposed to 10, 65, or 130 kV/m, 60-Hz vertical electric fields. Animals were exposed for 19 hr/day throughout the experiment. During gestation, exposure to the higher field strengths resulted in slightly depressed weight gains of dams. Offspring were born in the field and remained with their dams through the suckling period. Numbers of pups per litter and pup mortality did not differ among the exposure groups. Dams exposed at 65 kV/m lost slightly more weight through the lactation period than the control group. Male pups exposed to higher field strengths gained slightly less weight from 4 to 21 days of age than did sham-exposed animals. At weaning, two F1 females per litter (randomly selected) continued on the same exposure regimen were mated at 11 weeks of age to unexposed males, and euthanized at 20 days of gestation. Uterine contents were evaluated, and all live fetuses were weighed and examined for external, visceral, and skeletal malformations. Fertility and gestational weight gain of F1 females were not affected by exposure, nor was prenatal viability or fetal body weight. No significant increase in the incidence of litters with malformations was observed. Although no developmental toxicity was detected, exposures produced physical changes in the dams, evidenced as a rust-colored deposit on the muzzle and ears (chromodacryorrhea) that increased in incidence and severity at 65 and 130 kV/m. Incidence of chromodacryorrhea was not significantly different between sham-exposed rats and those exposed at 10 kV/m.