2019
DOI: 10.1155/2019/6137926
|View full text |Cite
|
Sign up to set email alerts
|

Deviations for Jumping Times of a Branching Process Indexed by a Poisson Process

Abstract: Consider a continuous time process {Yt=ZNt, t≥0}, where {Zn} is a supercritical Galton–Watson process and {Nt} is a Poisson process which is independent of {Zn}. Let τn be the n-th jumping time of {Yt}, we obtain that the typical rate of growth for {τn} is n/λ, where λ is the intensity of {Nt}. Probabilities of deviations n-1τn-λ-1>δ are estimated for three types of positive δ.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?