Compared to flatbed scanners, portable smartphones are much more convenient for physical documents digitizing. However, such digitized documents are often distorted due to uncontrolled physical deformations, camera positions, and illumination variations. To this end, this work presents DocScanner, a new deep network architecture for document image rectification. Different from existing methods, DocScanner addresses this issue by introducing a progressive learning mechanism. Specifically, DocScanner maintains a single estimate of the rectified image, which is progressively corrected with a recurrent architecture. The iterative refinements make DocScanner converge to a robust and superior performance, and the lightweight recurrent architecture ensures the running efficiency. In addition, before the above rectification process, observing the corrupted rectified boundaries existing in prior works, DocScanner exploits a document localization module to explicitly segment the foreground document from the cluttered background environments. To further improve the rectification quality, based on the geometric priori between the distorted and the rectified images, a geometric regularization is introduced during training to further facilitate the performance. Extensive experiments are conducted on the Doc3D dataset and the DocUNet benchmark dataset, and the quantitative and qualitative evaluation results verify the effectiveness of DocScanner, which outperforms previous methods on OCR accuracy, image similarity, and our proposed distortion metric by a considerable margin. Furthermore, our DocScanner shows the highest efficiency in inference time and parameter count.