This paper describes the effects of dexmedetomidine (DEX) 5 the active ingredient of medetomidine which is the latest popular sedative for functional magnetic resonance imaging (fMRI) in rodents 5 on multiple unit activity, local field potential (LFP), cerebral blood flow (CBF), pial vessel diameter (indicative of cerebral blood volume; CBV), and blood-oxygenation-level-dependent (BOLD) fMRI. These measurements were obtained from the rat somatosensory cortex during 10-s forepaw stimulation. We found that the continuous intravascular systemic infusion of DEX (50μg/kg/h, doses typically used in fMRI studies) caused epileptic activities and that supplemental isoflurane administration of ~0.3% helped suppress the development of epileptic activities and maintained robust neuronal and hemodynamic responses up to 3 hours. Supplemental administration of nitrous oxide (N2O) in addition to DEX nearly abolished hemodynamic responses even if neuronal activity remained. Under DEX-ISO anesthesia, spike firing rate and the delta power of LFP increased, while beta and gamma power decreased compared to ISO-only anesthesia. DEX administration caused pial arteries and veins to constrict nearly equally, resulting in decreases in baseline CBF and CBV. Evoked LFP and CBF responses to forepaw stimulation were largest at a frequency of 8–10 Hz, and a non-linear relationship was observed. Similarly, BOLD fMRI responses measured at 9.4 Tesla were largest at a frequency of 10 Hz. Both pial arteries and veins dilated rapidly (artery, 32.2%; vein, 5.8%), while venous diameter changes returned to baseline slower than arteries. These results will be useful for designing, conducting and interpreting fMRI experiments under DEX sedation.