BackgroundThe α2 agonists, dexmedetomidine and clonidine, are used as sedative drugs during critical illness. These drugs may have anti-inflammatory effects, which might be relevant to critical illness, but a systematic review of published literature has not been published. We reviewed animal and human studies relevant to critical illness to summarise the evidence for an anti-inflammatory effect from α2 agonists.MethodsWe searched PubMed, the Cochrane library, and Medline. Animal and human studies published in English were included. Broad search terms were used: dexmedetomidine or clonidine, sepsis, and inflammation. Reference lists were screened for additional publications. Titles and abstracts were screened independently by two reviewers and full-text articles obtained for potentially eligible studies. Data extraction used a bespoke template given study diversity, and quality assessment was qualitative.ResultsStudy diversity meant meta-analysis was not feasible so descriptive synthesis was undertaken. We identified 30 animal studies (caecal ligation/puncture (9), lipopolysaccharide (14), acute lung injury (5), and ischaemia-reperfusion syndrome (5)), and 9 human studies. Most animal (26 dexmedetomidine, 4 clonidine) and all human studies used dexmedetomidine. In animal studies, α2 agonists reduced serum and/or tissue TNFα (20 studies), IL-6 (17 studies), IL-1β (7 studies), NFκB (6 studies), TLR4 (6 studies), and a range of other mediators. Timing and doses varied widely, but in many cases were not directly relevant to human sedation use. In human studies, dexmedetomidine reduced CRP (4 studies), TNFα (5 studies), IL-6 (6 studies), IL-1β (3 studies), and altered several other mediators. Most studies were small and low quality. No studies related effects to clinical outcomes.ConclusionEvidence supports potential anti-inflammatory effects from α2 agonists, but the relevance to clinically important outcomes is uncertain. Further work should explore whether dose relationships with inflammation and clinical outcomes are present which might be separate from sedation-mediated effects.