The interactions between uranium and non‐innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium‐based metal–organic frameworks (MOFs) offer a new angle to study these interactions, as these self‐assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non‐innocent linkers. We report the synthesis of the MOF NU‐1700, assembled from U4+‐paddlewheel nodes and catecholate‐based linkers. We propose this highly unusual structure, which contains two U4+ ions in a paddlewheel built from four linkers—a first among uranium materials—as a result of extensive characterization via powder X‐ray diffraction (PXRD), sorption, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA), in addition to density functional theory (DFT) calculations.