Proceedings of the Sixth International Symposium on Information and Communication Technology 2015
DOI: 10.1145/2833258.2833310
|View full text |Cite
|
Sign up to set email alerts
|

DGA Botnet detection using Collaborative Filtering and Density-based Clustering

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
10
0
2

Year Published

2016
2016
2019
2019

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 19 publications
(12 citation statements)
references
References 4 publications
0
10
0
2
Order By: Relevance
“…In [14], the method based on network flow information over DNS traffic rather than domain names was proposed, but it is limited by the difficulty of collecting the flow information in large-scale networks. In [15], offline analysis to detect DGA botnets through whitelist filtering and clustering was given. In [16], BotMeter, a tool that charts the DGA-bot population landscapes in large-scale networks was proposed, which relies on a long period of analysis.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…In [14], the method based on network flow information over DNS traffic rather than domain names was proposed, but it is limited by the difficulty of collecting the flow information in large-scale networks. In [15], offline analysis to detect DGA botnets through whitelist filtering and clustering was given. In [16], BotMeter, a tool that charts the DGA-bot population landscapes in large-scale networks was proposed, which relies on a long period of analysis.…”
Section: Related Workmentioning
confidence: 99%
“…In actual fact, the methods in [12][13][14][15][16] are all limited by the status of the network environment and data integrity. In real networks, especially in large-scale networks, these traffic features are very difficult to collect.…”
Section: Related Workmentioning
confidence: 99%
“…Reference Building accurate and practical recommender system algorithms using machine learning classifier and collaborative filtering [20] DGA botnet detection using collaborative filtering and density-based clustering [21] A multistage collaborative filtering method for fall detection [22] Analysis and performance of collaborative filtering and classification algorithms [1] Extracting a vocabulary of surprise by collaborative filtering mixture and analysis of feelings [4] Content based filtering in online social network using inference algorithm [23] Building switching hybrid recommender system using machine learning classifiers and collaborative filtering [8] Imputation-boosted collaborative filtering using machine learning classifiers [24] CRISP-an interruption management algorithm based on collaborative filtering [25] A credit scoring model based on collaborative filtering [26] Collaborative filtering recommender systems [2] An improved switching hybrid recommender system using naive Bayes classifier and collaborative filtering [6] Tweet modeling with LSTM recurrent neural networks for hashtag recommendation [27] A two-stage cross-domain recommendation for cold start problem in cyber-physical systems [28] ELM based imputation-boosted proactive recommender systems [29] Twitter-user recommender system using tweets: a content-based approach [30] A personalized time-bound activity recommendation system [31] Automated content based short text classification for filtering undesired posts on Facebook [32] Shilling attack detection in collaborative recommender systems using a meta learning strategy [33] Building a distributed generic recommender using scalable data mining library [34] Context-aware movie recommendation based on signal processing and machine learning [35] Recommender systems using linear classifiers [36] A survey of accuracy evaluation metrics of recommendation tasks [3] Incorporating user control into recommender systems based on naive Bayesian classification [37] Classification features for attack detection in collaborative recommender systems [38] Automatic tag recommendation algorithms for social recommender systems [39] Optimizing similar item recommendations in a semistructured marketplace to maximize conversion …”
Section: Titlementioning
confidence: 99%
“…Trong các công trình [1,10,11], nhóm tác giả cũng đề xuất phương pháp phát hiện DGA botnet sử dụng đặc trưng ngữ nghĩa, đặc trưng thống kê, áp dụng các phương pháp phân cụm dựa trên mật độ DBSCAN, lọc cộng tác (collaborative filtering) và map-reduce để tính độ tương hợp giữa các hành vi của các máy trạm, K-means và biến thể của khoảng cách Mahalanobis. Tuy nhiên những cách tiếp cận này này thường chỉ hiệu quả với một hoặc một số kiểu DGA botnet nhất định.…”
Section: Giới Thiệuunclassified
“…Thứ nhất là chúng tôi sử dụng thêm các đặc trưng thống kê từ tên miền đầu vào. Các công trình nghiên cứu [6,[9][10][11][12] đều đề cập các đặc trưng này và đã chứng minh tính hiệu quả của chúng trong phát hiện một số dạng DGA botnet nhất định. Vì vậy, đặc trưng thống kê có thể được sử dụng kết hợp nhằm nâng cao tỷ lệ phát hiện đúng của mạng LSTM truyền thống.…”
Section: Giới Thiệuunclassified