Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Current treatments for type 2 diabetes (T2D) mainly rely on exercise, dietary control, and anti‐diabetic drugs to enhance insulin secretion and improve insulin sensitivity. However, there is a need for more therapeutic options. A potential target that has attracted attention is the protein tyrosine phosphatase 1B (PTP1B), which negatively regulates the insulin signaling pathway. In this work, a comprehensive computational screening was carried out using cheminformatics and molecular docking on PTP1B, employing a rigorous repurposing approach. The screening involved approved drugs and compounds under research as anti‐diabetics that bind to targets such as peroxisome proliferator‐activated receptor gamma (PPAR‐gamma) and alpha‐glucosidase. Some computational hits were then meticulously tested in vitro against PTP1B; particularly the 13‐cis‐retinoic acid ( 3a) showed an IC 50 of 0.044 mM and competitive inhibition. Molecular dynamics studies agrees that 3a can bind to the catalytic binding site of PTP1B. It is worth mentioning that 3a has been reported by the first time as an inhibitor of PTP1B in this work, making it a potentially valuable candidate for further studies in D2T treatment.
Current treatments for type 2 diabetes (T2D) mainly rely on exercise, dietary control, and anti‐diabetic drugs to enhance insulin secretion and improve insulin sensitivity. However, there is a need for more therapeutic options. A potential target that has attracted attention is the protein tyrosine phosphatase 1B (PTP1B), which negatively regulates the insulin signaling pathway. In this work, a comprehensive computational screening was carried out using cheminformatics and molecular docking on PTP1B, employing a rigorous repurposing approach. The screening involved approved drugs and compounds under research as anti‐diabetics that bind to targets such as peroxisome proliferator‐activated receptor gamma (PPAR‐gamma) and alpha‐glucosidase. Some computational hits were then meticulously tested in vitro against PTP1B; particularly the 13‐cis‐retinoic acid ( 3a) showed an IC 50 of 0.044 mM and competitive inhibition. Molecular dynamics studies agrees that 3a can bind to the catalytic binding site of PTP1B. It is worth mentioning that 3a has been reported by the first time as an inhibitor of PTP1B in this work, making it a potentially valuable candidate for further studies in D2T treatment.
Diabetes mellitus (DM) is a prevalent disorder with an urgent need for continuous, precise, and on-site biomarker monitoring devices. The continuous monitoring of DM biomarkers from different biological matrices will become routine in the future, thanks to the promising biosensor design. Lately, employing different nanomaterials in biosensor receptor parts has had a great impact on smart DM monitoring. Among them, gold nanostructures (AuNSs) have arisen as highly potential materials in fabricating precise DM biosensors due to their unique properties. The present study provides an update on the applications of AuNSs in biosensors for detecting glucose as well as other DM biomarkers, such as glycated hemoglobin (HbA1c), glycated albumin (GA), insulin, insulin antibodies, uric acid, lactate, and glutamic acid decarboxylase antibodies (GADA), with a focus on the most important factors in biosensor performance such as sensitivity, selectivity, response time, and stability. Specified values of limit of detection (LOD), linear concentrations, reproducibility%, recovery%, and assay time were used to compare studies. In conclusion, AuNSs, owing to the wide electrochemical potential window and low electrical resistivity, are valuable tools in biosensor design, alongside other biological reagents and/or nanomaterials.
Glycolipid metabolic disorders (GLMDs) are various metabolic disorders resulting from dysregulation in glycolipid levels, consequently leading to an increased risk of obesity, diabetes, liver dysfunction, neuromuscular complications, and cardiorenal vascular diseases (CRVDs). In patients with GLMDs, excess caloric intake and a lack of physical activity may contribute to oxidative stress (OxS) and systemic inflammation. This study aimed to review the connection between GLMD, OxS, metainflammation, and the onset of CRVD. GLMD is due to various metabolic disorders causing dysfunction in the synthesis, breakdown, and absorption of glucose and lipids in the body, resulting in excessive ectopic accumulation of these molecules. This is mainly due to neuroendocrine dysregulation, insulin resistance, OxS, and metainflammation. In GLMD, many inflammatory markers and defense cells play a vital role in related tissues and organs, such as blood vessels, pancreatic islets, the liver, muscle, the kidneys, and adipocytes, promoting inflammatory lesions that affect various interconnected organs through their signaling pathways. Advanced glycation end products, ATP-binding cassette transporter 1, Glucagon-like peptide-1, Toll-like receptor-4, and sphingosine-1-phosphate (S1P) play a crucial role in GLMD since they are related to glucolipid metabolism. The consequences of this is system organ damage and increased morbidity and mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.