Diagnosing and Rectifying Fake OOD Invariance: A Restructured Causal Approach
Ziliang Chen,
Yongsen Zheng,
Zhao-Rong Lai
et al.
Abstract:Invariant representation learning (IRL) encourages the prediction from invariant causal features to labels deconfounded from the environments, advancing the technical roadmap of out-of-distribution (OOD) generalization. Despite spotlights around, recent theoretical result verified that some causal features recovered by IRLs merely pretend domain-invariantly in the training environments but fail in unseen domains. The fake invariance severely endangers OOD generalization since the trustful objective can not be … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.