2020
DOI: 10.1177/1077546320929830
|View full text |Cite
|
Sign up to set email alerts
|

Diagnosis of rotating machine unbalance using machine learning algorithms on vibration orbital features

Abstract: The diagnosis of failures in rotating machines has been subject to studies because of its benefits to maintenance improvement. Condition monitoring reduces maintenance costs, increases reliability and availability, and extends the useful life of critical rotating machinery in industry ambiance. Machine learning techniques have been evolving rapidly, and its applications are bringing better performance to many fields. This study presents a new strategy to improve the diagnosis performance of rotating machines u… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 12 publications
(6 citation statements)
references
References 17 publications
0
6
0
Order By: Relevance
“…Yang_2017 [161] Isham_2019 [162] Amarnath_2013 [163] Mao_2018 [164] Chen_2015 [165] Rafiq_2021 [166] Isham_2018 [167] Jegadeeshwaran_2014 [168] Cyclostationary and cyclo-non-stationary analysis [173] Sun_2020 [174] Jeon_2020 [175] Fan_2020 [176] Youcef_2020 [177] Yang_2019 [178] Xin_2018 [179] Hamadache_2018 [180] Song_2018 [181] Golbaghi_2017 [182] Li_2016c [137] Raj_2015 [183] Ocak_2001 [184] Oh_2018 [185] Tarek_2020 [186] Li_2018 [187] Hong_2017 [188] Cerrada_2015 [189] Fan_2015 [190] Yang_2018 [191] Qiang_2014 [192] Moghadam_2021 [193] He_2016 [194] Gierlak_2017 [195] Zhao_2019b [196] Unique Jablon_2021 [197] Gu_2021 [198] Mohamad_2020 [2] Yan_2019 [199] Barbini_2018 [200] Khan_2016 [201] Biswas_2013 [202] Bai_2021a [203] Mohamad_2020 [2] Hizarci_2019 [204] Medina_2019 [205] Chen_2002 [206] Chen_2002…”
Section: Stft Wavelet Wigner-ville (Wv) Distribution Hilbert-huang Transform Cohen Class Functionsmentioning
confidence: 99%
See 1 more Smart Citation
“…Yang_2017 [161] Isham_2019 [162] Amarnath_2013 [163] Mao_2018 [164] Chen_2015 [165] Rafiq_2021 [166] Isham_2018 [167] Jegadeeshwaran_2014 [168] Cyclostationary and cyclo-non-stationary analysis [173] Sun_2020 [174] Jeon_2020 [175] Fan_2020 [176] Youcef_2020 [177] Yang_2019 [178] Xin_2018 [179] Hamadache_2018 [180] Song_2018 [181] Golbaghi_2017 [182] Li_2016c [137] Raj_2015 [183] Ocak_2001 [184] Oh_2018 [185] Tarek_2020 [186] Li_2018 [187] Hong_2017 [188] Cerrada_2015 [189] Fan_2015 [190] Yang_2018 [191] Qiang_2014 [192] Moghadam_2021 [193] He_2016 [194] Gierlak_2017 [195] Zhao_2019b [196] Unique Jablon_2021 [197] Gu_2021 [198] Mohamad_2020 [2] Yan_2019 [199] Barbini_2018 [200] Khan_2016 [201] Biswas_2013 [202] Bai_2021a [203] Mohamad_2020 [2] Hizarci_2019 [204] Medina_2019 [205] Chen_2002 [206] Chen_2002…”
Section: Stft Wavelet Wigner-ville (Wv) Distribution Hilbert-huang Transform Cohen Class Functionsmentioning
confidence: 99%
“…In the table, the nomenclature for categories and sub-categories of phases, components, and topics reflect the previously introduced legend. Bajaj_2022 [276] x p3 x Xu_2022 [277] x p4 x x Ye_2021a [244] x p3 x Ahmed_2021 [172] x x p2 x x Mufazzal_2021 [278] x p4 x Yang_2021 [110] x p2 x x x x x Moghadam_2021 [193] x p2 x x Saucedo-Dorantes_2021 [173] x p2 x x x x Espinoza-Sepulveda_2021 [279] x p4 x x Kalista_2021 [73] x p1 x x x Zhang_2021a [280] x p4 x x Zhang_2021b [267] x p3 x x Meng_2021 [59] x p1 x x Tiwari_2021 [95] x p1 x x Tatsis_2021 [281] x p4 x x Leaman_2021 [282] x p5 x x Ou_2021 [283] x p5 x x Espinoza_2021 [226] x x p3 x x Wang_2021 [233] x p3 x x x Goyal_2021 [60] x p1 x x Bai_2021a [203] x p2 x x x Yu_2021 [75] x p1 x x Papathanasopoulos_2021 [66] x p1 x x Sharma_2021 [25] x p1 x x x Rauber_2021 [219] x p3 x x Laval_2021 [76] x p1 x x x x Shao_2021 [158] x x p2 x x Rafiq_2021 [166] x p2 x x x x Zhao_2021 [77] x p1 x x Gómez_2021 [284] x p1 x x Jablon_2021 [197] x p2 x x Barusu_2021 [62] x p1 x x x x Hadroug_2021 [250] x p3 x Hou_2021 [35] x x p1 x x Yuan_2021 [285] x p5 x Ye_2021b [245] x p3 x x x Tingarikar_2021 [286] x p4 x Ribeiro_2021 [287] x p2 x Peng_2021 [288] x x p2 x x x Gu_2021 …”
Section: Appendix Amentioning
confidence: 99%
“…28 used experiments to obtain faulty datasets and further compared the classification accuracy of machine learning models such as ANN and CNN. Jablon et al 29 proposed a new strategy that utilizes machine learning strategies based on vibration trajectory features to improve the diagnostic performance of rotating machinery. this method had an accuracy of nearly 60%.…”
Section: Introductionmentioning
confidence: 99%
“…The operation of trunk shakers has been characterised with mathematical models for decades (Eshc & Ee, 1989; Lang, 2006) and computational models exist (Hoshyarmanesh et al, 2017; Sanchez-Cachinero et al, 2022). The vibratory force generated is directly related to the mass, eccentricity of the rotating mass and to the square of the angular velocity at which it rotates (Jablon et al, 2021). The modification of the design variable eccentricity and angular velocity in the machines results in the generation of different vibration patterns, so it has different effects on trees species.…”
Section: Introductionmentioning
confidence: 99%