An efficient diagnosis is very important for a multiprocessor system. The ability to identify all the faulty devices in a multiprocessor system is known as diagnosability. In the comparison model, the diagnosis is performed by sending two identical signals from a processor to a pair of distinct neighbors, and then comparing their responses. Sengupta and Dahbura proposed a polynomial-time algorithm with time complexity to diagnose a system with a total number of processors under the comparison model. Recently, some concepts, such as the conditional diagnosability and the local diagnosability, are concerned with the measure which is able to better reflect fault patterns in real systems. In this paper, we propose a specific structure, the balanced wind-bell-tree, and give an algorithm to determine the fault status of each processor for conditional local diagnosis under the comparison model. According to our results, a specific -connected network with the balanced wind-bell-tree structure is conditionally -diagnosable, and the time complexity to diagnose all the faulty processors is with our algorithm, where is the total number of the processors in the network.
Index Terms-Comparisondiagnosis model, conditional diagnosability, local diagnosis, system diagnosis. ACRONYMS AND ABBREVIATIONS NoC network-on-chip PMC Preparata, Metze, Chien MM Maeng, Malek VLSI very large scale integration NOTATIONS a graph, where is a finite set, and is a subset of { is an unordered pair of } the neighborhood set the degree of in