Pleural mesothelioma (PM) is a type of cancer that is highly related to exposure to asbestos fibers. It shows aggressive behavior, and the current therapeutic approaches are usually insufficient to change the poor prognosis. Moreover, apart from staging and histological classification, there are no validated predictors of its response to treatment or its long-term outcomes. Numerous studies have investigated minimally invasive biomarkers in pleural fluid or blood to aid in earlier diagnosis and prognostic assessment of PM. The most studied marker in pleural effusion is mesothelin, which exhibits good specificity but low sensitivity, especially for non-epithelioid PM. Other biomarkers found in pleural fluid include fibulin-3, hyaluronan, microRNAs, and CYFRA-21.1, which have lower diagnostic capabilities but provide prognostic information and have potential roles as therapeutic targets. Serum is the most investigated matrix for biomarkers of PM. Several serum biomarkers in PM have been studied, with mesothelin, osteopontin, and fibulin-3 being the most often tested. A soluble mesothelin-related peptide (SMRP) is the only FDA-approved biomarker in patients with suspected mesothelioma. With different serum and pleural fluid cut-offs, it provides useful information on the diagnosis, prognosis, follow-up, and response to therapy in epithelioid PM. Panels combining different markers and proteomics technologies show promise in terms of improving clinical performance in the diagnosis and monitoring of mesothelioma patients. However, there is still no evidence that early detection can improve the treatment outcomes of PM patients.