Recently, various fault diagnosis methods based on domain adaptation (DA) have been explored to solve the problem of discrepancy between the source and target domains. However, given complex industrial scenarios, DA-based methods usually fail when the working conditions of machines are unseen, i.e., target data are unavailable during model training. In this work, a generic domain-regressive framework for fault diagnosis, namely, adversarial domain-invariant generalization (ADIG), is proposed. ADIG leverages multiple available domain data to exploit domain-invariant knowledge through adversarial learning between the feature extractor and the domain classifier. Simultaneously, the fault classifier generalizes the knowledge from the source-related domain to diagnose the unseen but related target domain signals. Moreover, customized strategies of feature normalization and adaptive weight are proposed to promote diagnosis performance. Comprehensive case studies show that ADIG achieves satisfactory diagnosis accuracy and robustness under unseen conditions, indicating that ADIG is a remarkably potential diagnosis tool for real-case industrial machines.