Acute lung injury (ALI) caused by gas explosion is common, and warrants research on the underlying mechanisms. Specifically, the role of abnormalities of coagulation and fibrinolysis in this process has not been defined. It was hypothesized that the abnormal coagulation and fibrinolysis promoted ALI caused by gas explosion. Based on the presence of ALI, 74 cases of gas explosion injury were divided into the ALI and non‐ALI groups. The results of prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), and platelet count (PLT) were collected within 24 hours and compared between the groups. ALI models caused by gas explosion were established in Sprague Dawley rats, and injuries were evaluated using hematoxylin and eosin (HE) staining and histopathological scoring. Moreover, the bronchoalveolar lavage fluid (BALF) was collected to examine thrombin‐antithrombin complex (TAT), tissue factor (TF), tissue factor pathway inhibitor (TFPI), and plasminogen activator inhibitor‐1 (PAI‐1) levels by enzyme‐linked immunosorbent assay (ELISA). The patients in ALI group had shorter PT and longer APTT, raised concentration of FIB and decreased number of PLT, as compared to the non‐ALI group. In ALI rats, the HE staining revealed red blood cells in alveoli and interstitial thickening within 2 hours which peaked at 72 hours. The levels of TAT/TF in the BALF increased continually until the seventh day, while the PAI‐1 was raised after 24 hours and 7 days. The TFPI was elevated after 2 hours and 24 hours, and then decreased after 72 hours. Abnormalities in coagulation and fibrinolysis in lung tissues play a role in ALI caused by gas explosion.