Rheumatoid arthritis (RA) is chronic systemic disease that can cause joint damage, disability and destructive polyarthritis. Current diagnosis of RA is based on a combination of clinical and laboratory features. However, RA diagnosis can be difficult at its disease onset on account of overlapping symptoms with other arthritis, so early recognition and diagnosis of RA permit the better management of patients. In order to improve the medical diagnosis of RA and evaluate the effects of different clinical features on RA diagnosis, we applied an artificial neural network (ANN) as the training algorithm, and used fivefold cross-validation to evaluate its performance. From each sample, we obtained data on 6 features: age, sex, rheumatoid factor, anti-citrullinated peptide antibody (CCP), 14-3-3η, and anti-carbamylated protein (CarP) antibodies. After training, this ANN model assigned each sample a probability for being either an RA patient or a non-RA patient. On the validation dataset, the F1 for all samples by this ANN model was 0.916, which was higher than the 0.906 we previously reported using an optimal threshold algorithm. Therefore, this ANN algorithm not only improved the accuracy of RA diagnosis, but also revealed that anti-CCP had the greatest effect while age and anti-CarP had a weaker on RA diagnosis.