Evaluating SARS-CoV-2 viral loads in nasopharyngeal (NP) and saliva samples, factors affecting viral loads, and the performance of rapid antigen testing (RAT) have not been comprehensively conducted during SARS-CoV-2 Omicron epidemic. This prospective study included outpatients enrolled during Omicron variant period in Japan. Paired NP swab and saliva samples were collected to measure viral loads by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The correlation between viral loads and clinical symptoms was examined. The performance of an immunochromatography-based RAT kit was also assessed. A total of 153 patients tested within 3 days of symptom onset were included. The mean viral load was 5.60 log
10
copies/test and 3.65 log
10
copies/test in NP and saliva samples, respectively, resulting in a significant difference (
P
< 0.0001). Fever over 37°C (axillary temperature) and total number of symptoms other than fever were identified as independent factors positively correlated with the viral loads in both NP and saliva samples. RAT sensitivity using NP and saliva samples was 92% and 68%, respectively, using positive RT-qPCR results as the reference. The sensitivity of RAT using NP and saliva samples was significantly higher in patients with fever ≥37°C and/or at least one symptom than in those with fever <37°C and/or no symptoms (97% vs 83% in NP swabs; 80% vs 50% in saliva). Distinct symptoms, including fever ≥37°C, may reflect high Omicron variant viral loads. Rapid antigen testing, not only using nasopharyngeal swabs but also using saliva, would be useful for COVID-19 diagnosis as point-of-care testing, particularly for symptomatic patients.
IMPORTANCE
We examined nasopharyngeal and salivary viral loads using samples collected from outpatients with SARS-CoV-2 infection during the Omicron epidemic in Japan and explored the outpatient factors correlated with viral loads. In addition, we evaluated the performance of an authorized rapid antigen testing (RAT) kit using nasopharyngeal and saliva samples with RT-PCR testing as the reference. Intriguingly, a correlation between fever and other symptoms and SARS-CoV-2 viral loads in nasopharyngeal and saliva samples was observed based on one COVID-19 outpatient visit. RAT sensitivity was influenced by viral loads. Nevertheless, nasopharyngeal RAT is considered useful for SARS-CoV-2 point-of-care diagnosis. In patients with distinct symptoms, including high-grade fever, salivary RAT could be a practical diagnostic tool because of the higher estimated viral loads. After the Omicron epidemic, outpatients with mild COVID-19 have become the main focus of diagnosis and treatment. Our study provides valuable information regarding the point-of-care diagnosis of these patients.