Screening plans for prevention and containment of SARS-CoV-2 infection should take into account the epidemic context, the fact that undetected infected individuals may transmit the disease and that the infection spreads through outbreaks, creating clusters in the population. In this paper, we compare through simulations the performance of six screening plans based on poorly sensitive individual tests, in detecting infection outbreaks at the level of single classes in a typical European school context. The performance evaluation is done by simulating different epidemic dynamics within the class during the four weeks following the day of the initial infection. The plans have different costs in terms of number of individual tests required for the screening and are based on recurrent evaluations on all students or subgroups of students in rotation. Especially in scenarios where the rate of contagion is high, at an equal cost, testing half of the class in rotation every week appears to be better in terms of sensitivity than testing all students every two weeks. Similarly, testing one-fourth of the students every week is comparable with testing all students every two weeks, despite the first one is a much cheaper strategy. In conclusion, we show that in the presence of natural clusters in the population, testing subgroups of individuals belonging to the same cluster in rotation may have a better performance than testing all the individuals less frequently. The proposed simulations approach can be extended to evaluate more complex screening plans than those presented in the paper.