Parkinson's disease (PD) is the second most common neurodegenerative disease and the most common synucleinopathy, as alpha-synuclein (α-syn), a prion-like protein, plays an important pathophysiological role in its onset and progression. Although neuropathological changes begin many years before the onset of motor manifestations, diagnosis still relies on the identification of the motor symptoms, which hinders to formulate an early diagnosis. Since α-syn misfolding and aggregation precede clinical manifestations, the possibility to identify these phenomena in PD patients would allow us to recognize the disease at the earliest, premotor phases, as a consequence of the transition from a clinical to a molecular diagnosis.Seed amplification assays (SAAs) are a group of techniques that currently support the diagnosis of prion subacute encephalopathies, namely Creutzfeldt Jakob disease. These techniques enable the detection of minimal amounts of prions in cerebrospinal fluid (CSF) and other matrices of affected patients. Recently, SAAs have been successfully applied to detect misfolded α-syn in CSF, olfactory mucosa, submandibular gland biopsies, skin and saliva, of patients with PD and other synucleinopathies. In these categories, they can differentiate PD and dementia with Lewy bodies (DLB) from control subjects, even in the prodromal stages of the disease. In terms of differential diagnosis, SAAs satisfactorily differentiated PD, DLB, and multiple system atrophy (MSA) from non-synucleinopathy parkinsonisms. The kinetic analysis of the SAA fluorescence profiles allowed the identification of synucleinopathy-dependent α-syn fibrils conformations, commonly referred to as strains, which have demonstrated diagnostic potential in differentiating among synucleinopathies, especially between Lewy body diseases (PD, DLB) and MSA. In front of these highly promising data, which make the α-syn seeding activity detected by SAAs as the most promising diagnostic biomarker for synucleinopathies, there are still preanalytical and analytical issues, mostly related to the assay standardization, which need to be solved. In this review, we discuss the key findings supporting the clinical application of α-syn SAAs to identify PD and other synucleinopathies, the unmet needs, and future perspectives.