Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Gitelman syndrome is one of the few inherited causes of metabolic alkalosis due to salt losing tubulopathy. It is caused by tubular defects at the level of distal convoluted tubules, mimicking a thiazide-like tumor. It usually presents in late childhood or in teenage as nonspecific weakness, fatigability, polyuria, and polydipsia but very rarely with seizures. It is classically associated with hypokalemia, hypomagnesemia, hypocalciuria, hyperreninemia, and hyperaldosteronism. However, less frequently, it can present with normal magnesium levels. It is even rarer to find normomagnesemic patients of GS who develop seizures as the main complication since hypomagnesemia is considered the principal etiology of abnormal foci of seizure-related brain activity in GS cases. Interestingly, patients with GS are oftentimes diagnosed during pregnancy when the classic electrolyte pattern consistent with GS is noticed. Our case presents GS with normal serum magnesium in a patient, with seizures being the main clinical presentation. We also did a comprehensive literature review of 122 reported cases to show the prevalence of normal magnesium in GS cases and an overview of clinical and biochemical variability in GS. We suggest that further studies and in-depth analysis are required to understand the pathophysiology of seizures in GS patients with both normal and low magnesium levels.
Gitelman syndrome is one of the few inherited causes of metabolic alkalosis due to salt losing tubulopathy. It is caused by tubular defects at the level of distal convoluted tubules, mimicking a thiazide-like tumor. It usually presents in late childhood or in teenage as nonspecific weakness, fatigability, polyuria, and polydipsia but very rarely with seizures. It is classically associated with hypokalemia, hypomagnesemia, hypocalciuria, hyperreninemia, and hyperaldosteronism. However, less frequently, it can present with normal magnesium levels. It is even rarer to find normomagnesemic patients of GS who develop seizures as the main complication since hypomagnesemia is considered the principal etiology of abnormal foci of seizure-related brain activity in GS cases. Interestingly, patients with GS are oftentimes diagnosed during pregnancy when the classic electrolyte pattern consistent with GS is noticed. Our case presents GS with normal serum magnesium in a patient, with seizures being the main clinical presentation. We also did a comprehensive literature review of 122 reported cases to show the prevalence of normal magnesium in GS cases and an overview of clinical and biochemical variability in GS. We suggest that further studies and in-depth analysis are required to understand the pathophysiology of seizures in GS patients with both normal and low magnesium levels.
BackgroundGitelman syndrome (GS), an inherited autosomal recessive salt-losing renal tubulopathy caused by mutations in SLC12A3 gene, has been associated with normal prostaglandin E2 (PGE2) levels since 1995 by a study involving 11 clinically diagnosed patients. However, it is difficult to explain why cyclooxygenase-2 (COX2) inhibitors, which pharmacologically reduce PGE2 synthesis, are helpful to patients with GS, and few studies performed in the last 20 years have measured PGE2 levels. The relationships between the clinical manifestations and PGE2 levels were never thoroughly analyzed.MethodsThis study involved 39 GS patients diagnosed by SLC12A3 gene sequencing. Plasma and 24-h urine samples as well as the clinical data were collected at admission. PGE2 and PGEM levels were detected in plasma and urine samples by enzyme immunoassays. The in vivo function of the sodium-chloride co-transporter (NCC) in GS patients was evaluated using a modified thiazide test. The association among PGE2 levels, clinical manifestations and the function of NCC in GS patients were analyzed.ResultsSignificantly higher levels of urinary and plasma PGEM were observed in GS patients than in the healthy volunteers. Higher urinary PGEM levels indicated more severe clinical manifestations and NCC dysfunction estimated by the increase of Cl- clearance. A higher PGEM level was found in male GS patients, who showed earlier onset age and more severe hypokalemia, hypochloremia and metabolic alkalosis than female GS patients. No relationship between renin angiotensin aldosterone system activation and PGEM level was observed.ConclusionsHigher urinary PGEM levels indicated more severe clinical manifestations and NCC dysfunction in GS patients. COX2 inhibition might be a potential therapeutic target in GS patients with elevated PGEM levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.