The aim of this study was to discover novel biomarkers for pulmonary tuberculosis (TB). Differentially expressed proteins in the serum of patients with TB were screened and identified by iTRAQ-two dimensional liquid chromatography tandem mass spectrometry analysis. A total of 79 abnormal proteins were discovered in patients with TB compared with healthy controls. Of these, significant differences were observed in 47 abnormally expressed proteins between patients with TB or pneumonia and chronic obstructive pulmonary disease (COPD). Patients with TB (n = 136) exhibited significantly higher levels of serum amyloid A (SAA), vitamin K-dependent protein Z (PROZ), and C4b-binding protein β chain (C4BPB) than those in healthy controls (n = 66) (P<0.0001 for each) albeit significantly lower levels compared with those in patients with pneumonia (n = 72) (P<0.0001 for each) or COPD (n = 72) (P<0.0001, P<0.0001, P = 0.0016, respectively). After 6 months of treatment, the levels of SAA and PROZ were significantly increased (P = 0.022, P<0.0001, respectively), whereas the level of C4BPB was significantly decreased (P = 0.0038) in treated TB cases (n = 72). Clinical analysis showed that there were significant differences in blood clotting and lipid indices in patients with TB compared with healthy controls, patients with pneumonia or COPD, and treated TB cases (P<0.05). Correlation analysis revealed significant correlations between PROZ and INR (rs = 0.414, P = 0.044), and between C4BPB and FIB (rs = 0.617, P = 0.0002) in patients with TB. Receiver operating characteristic curve analysis revealed that the area under the curve value of the diagnostic model combining SAA, PROZ, and C4BPB to discriminate the TB group from the healthy control, pneumonia, COPD, and cured TB groups was 0.972, 0.928, 0.957, and 0.969, respectively. Together, these results suggested that SAA, PROZ, and C4BPB may serve as new potential biomarkers for TB. Our study may thus provide experimental data for the differential diagnosis of TB.