In this paper, a method called bilateral diagonal 2DLDA is proposed for face recognition. Two methods called Dia2DPCA and Dia2DLDA were suggested to reserve the correlations between the variations in the rows and columns of diagonal images. However, these methods work in the row direction of these images. A row-directional projection matrix can be obtained by calculating the between-class and within-class covariance matrices making an allowance for the column variation of alternative diagonal face images. In addition, column-directional projection matrix can be obtained by calculating the between-class and within-class covariance matrices making an allowance for the row variation in diagonal images. A bilateral projection scheme was applied using left and right multiplying projection matrices. As a result, the dimension of the feature matrix and computation time can be reduced. Experiments carried out on an ORL face database show that the proposed method with three different distance measures, namely, Frobenius, Yang and AMD, is more accurate than some methods, such as 2DPCA, B2DPCA, 2DLDA, etc.