A sequence of finite-dimensional quotients of affine Hecke algebras is studied. Each element of the sequence is constructed so as to have a weight space labelling scheme for Specht/standard modules. As in the weight space formalism of algebraic Lie theory, there is an action of an affine reflection group on this weight space that fixes the set of labelling weights. A linkage principle is proved in each case. Further, it is shown that the simplest non-trivial example may essentially be identified with the blob algebra (a physically motivated quasihereditary algebra whose representation theory is very well understood by Lie-theory-like methods). An extended role is hence proposed for Soergel's tilting algorithm, away from its algebraic Lie theory underpinning, in determining the simple content of standard modules for these algebras. This role is explicitly verified in the blob algebra case. A tensor space representation of the blob algebra is constructed, as a candidate for a full tilting module (subsequently proven to be so in a paper by Martin and Ryom-Hansen), further evidencing the extended utility of Lie-theoretic methods. Possible generalisations of this representation to other elements of the sequence are discussed.