The PLA-groundnut shell solution is electrospun to produce nanocomposite fibre. The spinneret containing the composite solution was placed 24.7 cm away from the aluminium collector, tilted at an angle of 30 °, and the solution flow rate kept at 1 mL/min. Groundnut Shell particle (GSP) weight fraction used was varied from 3 -8 wt. %. Particle reinforced nanofibres were formed on the collector from the composite solution at 26 kV. These nanofibres were subjected to tensile test and the result indicates that at 6 wt. % untreated GSP reinforced fibre possessed the best tensile stiffness of 24.62 MPa. This corresponds to 2.201 % increase in Modulus of Elasticity over the unreinforced PLA (1.07 MPa). The 7 wt. % treated GSP fibre showed the least stiffness (0.33 MPa), which is 69 % reduction over that of unreinforced fibre. PLA fibre reinforced with 5 wt. % untreated GSP displayed best blend of properties over the unreinforced with increase of 286 % (4.43 x 10 -4 HB), 1,502 % (1.07 MPa), 286 % (0.22 MPa), 6.8 % (0.05 J) and 1,081 % (~ 0.15 MPa) in hardness, stiffness, UTS, energy at break and stress at break respectively. However, ductility decreased by ~33.3 % when compared to the unreinforced (18.27). The 5 wt. % untreated GSP PLA reinforced fibre showed the highest UTS (0.855 MPa). The micrographs showed beads on reinforced fibres, while the virgin PLA showed no beads.