Abstract:Diameter estimates for Kähler metrics are established which require only an entropy bound and no lower bound on the Ricci curvature. The proof builds on recent PDE techniques for estimates for the Monge–Ampère equation, with a key improvement allowing degeneracies of the volume form of codimension strictly greater than one. As a consequence, we solve the long‐standing problem of uniform diameter bounds and Gromov–Hausdorff convergence of the Kähler–Ricci flow, for both finite‐time and long‐time solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.