2021
DOI: 10.48550/arxiv.2105.08359
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Diameters of the level sets for reaction-diffusion equations in nonperiodic slowly varying media *

Abstract: We consider in this article reaction-diffusion equations of the Fisher-KPP type with a nonlinearity depending on the space variable x, oscillating slowly and non-periodically. We are interested in the width of the interface between the unstable steady state 0 and the stable steady state 1 of the solutions of the Cauchy problem. We prove that, if the heterogeneity has large enough oscillations, then the width of this interface, that is, the diameter of some level sets, diverges linearly as t → +∞ along some seq… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?