2014
DOI: 10.1016/j.diamond.2014.01.003
|View full text |Cite
|
Sign up to set email alerts
|

Diamond-like carbon (DLC) films as electrochemical electrodes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
59
0
1

Year Published

2015
2015
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 101 publications
(60 citation statements)
references
References 94 publications
0
59
0
1
Order By: Relevance
“…Diamond-like carbon (DLC) has received increasing attention, because it has many attractive properties for electrochemical sensor applications: chemical inertness, wide potential window, low background current and excellent mechanical properties [6][7][8]. DLC films can be deposited at room temperature allowing the use of a wide array of substrate materials and making it compatible with modern micro-and nanofabrication processes.…”
Section: Accepted M Manuscriptmentioning
confidence: 99%
See 1 more Smart Citation
“…Diamond-like carbon (DLC) has received increasing attention, because it has many attractive properties for electrochemical sensor applications: chemical inertness, wide potential window, low background current and excellent mechanical properties [6][7][8]. DLC films can be deposited at room temperature allowing the use of a wide array of substrate materials and making it compatible with modern micro-and nanofabrication processes.…”
Section: Accepted M Manuscriptmentioning
confidence: 99%
“…DLC films can be deposited at room temperature allowing the use of a wide array of substrate materials and making it compatible with modern micro-and nanofabrication processes. [8] For in vivo use, DLC has also good biocompatibility [9] and resistance to bacterial adhesion [10]. Despite its potential, only few studies have investigated the application of DLC in the detection of neurotransmitters [11][12][13].…”
Section: Accepted M Manuscriptmentioning
confidence: 99%
“…Так в работе [4] продемонстрировано увеличение эффективности кремниевых солнечных элементов после напыления просветляющей DLC-пленки. Показаны перспективы их ис-пользования и для высокочувствительных тонкопленочных резистивных термометров, работающих вблизи комнатной температуры [5], для создания оптически прозрачных инертных электродов в приложениях электрохимии [6,7], для создания датчиков давления на основе диодов Шоттки металл−DLC−полупроводник [8], в качестве антифрикционных и биологически инертных покрытий на имплантаты [9] и др. Учи-тывая весь комплекс свойств, можно уверенно предсказать успешное использование таких пленок и в будущем: в микро-и наноэлектро-нике, электрохимии, медицине и в биосенсорике.…”
Section: поступило в редакцию 20 октября 2015 г в окончательной редаunclassified
“…The well-known diamond-like carbon (DLC) film is referred to as amorphous hydrogenated carbon (a-C: H) film having sp 2 C=C and sp 3 C-H carbons and some films containing up to 50 at% hydrogen 5,6 . The unique properties of a-C: H films make them suitable for various industrial applications [5][6][7] , viz. antireflective, scratch-resistant wear-protective coating, cold cathode material in electron devices, biomedical devices, etc.…”
mentioning
confidence: 99%
“…antireflective, scratch-resistant wear-protective coating, cold cathode material in electron devices, biomedical devices, etc. The amorphous DLC (a-C: H) film was not reported [5][6][7] for application as hydrogen-storage material 8 in hydrogen-fuel technologies 1 . Since the discoveries of (i) experimental synthesis of graphene 9 (two-dimensional one-atom-thick layer of carbon in hexagonal crystalline structure), and (ii) theoretical prediction of graphane 10 (hydrogenation of both sides of graphene alternately), followed by experimental hydrogenation of one side of graphene by hydrogen plasmas 11 created a focused interest among researchers for the laboratory synthesis of graphane 10,12 , which is considered as one of the thinnest DLC films due to pure sp 3 hybridization of all carbon-carbon -bonds/carbon-hydrogen -bonds and absence of conductive -bonds (Figure 1).…”
mentioning
confidence: 99%