Synthesis of copolymers from carbon dioxide (CO2) and epoxides is an important research direction as such processes utilize the abundant greenhouse gas and deliver useful products. Specifically, cooligomers of CO2 and propylene oxide (PO) with a non-alternating structure can be used for polyurethane preparation. They are synthesized by employing Zn-Co cyanide catalysts. The application of alternative metal cyanide complexes is interesting from scientific and practical points of view. The purpose of this work was to study the copolymerization of CO2 and PO in the presence of Co-Ni cyanide catalysts and chain transfer agents (CTAs) in order to obtain low molecular weight products. Three Co-Ni catalysts with different contents of complexing agents were synthesized, characterized by several analytical methods and applied for this reaction. The complex without complexing agents was chosen for detailed investigation. 1,6-Hexanediol proved to be a more preferred CTA than poly(propylene glycol) and adipic acid. An oligo(ethercarbonate) (Mn = 2560, PDI = 2.5, CO2 = 20 mol.%) capped with OH groups was synthesized with relatively high productivity (1320 gPO+CO2/gcat in 24 h) and characterized by matrix-assisted laser desorption/ionization (MALDI) MS and NMR methods. The main chain transfer routes during the cooligomerization were suggested on the basis of the research results.