Piscibactins and photoxenobactins are metallophores and
virulence
factors, whose biosynthetic gene cluster, termed
pxb
, is the most prevalent polyketide synthase/non-ribosomal peptide
synthetase hybrid cluster across entomopathogenic bacteria. They are
structurally similar to yersiniabactin, which contributes to the virulence
of the human pathogen
Yersinia pestis
. However, the
pxb
-derived products feature various
chain lengths and unusual carboxamide, thiocarboxylic acid, and dithioperoxoate
termini, which are rarely found in thiotemplated biosyntheses. Here,
we characterize the
pxb
biosynthetic logic by gene
deletions, site-directed mutagenesis, and isotope labeling experiments.
Notably, we propose that it involves (1) heterocyclization domains
with various catalytic efficiencies catalyzing thiazoline and amide/thioester
bond formation and (2) putative C–N and C–S bond cleavage
off-loading manners, which lead to products with different chain lengths
and usual termini. Additionally, the post-assembly-line spontaneous
conversions of the biosynthetic end product contribute to production
titers of the other products in the culture medium. This study broadens
our knowledge of thiotemplated biosynthesis and how bacterial host
generate a chemical arsenal.