The exploration of the effect of substituents at C7 and C8 of the 5-phenylmorphans on their affinity for opioid receptors was enabled by our recently introduced “one pot” diastereoselective synthesis that provided C7-oxo, hydroxy and alkyl substituents, C8-alkyl substituted 5-phenylmorphans, and compounds that had a new cyclohexane ring that includes the C7 and C8 carbon atoms of the 5-phenylmorphan. The affinity of the 5-phenylmorphans for opioid receptors is increased by a C8-methyl substituent, compared with its C7 analogue. The affinity of the newly synthesized compounds is generally for the μ-opioid receptor, rather than the δ- or κ-receptors. Addition of a new cyclohexane ring to the C7 and C8 positions on the cyclohexane ring of the 5-phenylmorphans enhances μ-receptor affinity, bringing the Ki to the subnanomolar level. Unexpectedly, the N-methyl substituted compounds generally had higher affinity than comparable N-phenethyl-substituted relatives. The configurations of two compounds were determined by single-crystal X-ray crystallographic analyses.