Diaziridines and their fused analogues have a wide-range potential as a test subjects for theoretical and practical application. This review covers our investigations focused on the development of optimal methods for the synthesis of monocyclic and fused diaziridine derivatives. Several approaches to the preparation of monocyclic diaziridine derivatives were developed: (1) a synthesis of 3,3-di-and 1,3,3-trialkylmono-and α,ω-bis(diaziridin-1-yl)alkanes from ketoxime O-sulfonates and ammonia, and primary aliphatic amines, respectively, as well as of practically previously inaccessible 3-monoalkyldiaziridines from ammonium salts of aldoxime O-sulfonic acids and ammonia (2) a synthesis of diaziridines from carbonyl compounds, primary aliphatic amines, and aminating reagents in water (or a water-MeOH mixture) at controlled pH of the medium, as well as from carbonyl compounds, amines and N-chloroalkylamines in aprotic solvents in the presence of K 2 CO 3, and (3) a synthesis of 1,2,3-trialkyldiaziridines from Nchloroalkylamines without carbonyl compounds in the presence of primary aliphatic amines at high pressure. As regards fused diaziridine derivatives, general and simple methods were developed to prepare four types of these structures: 1,5-diazabicyclo[3.1.0]hexanes, 1,6-diazabicyclo[4.1.0]heptanes, 1,3,5-triazabicyclo[3.1.0] hexanes, including the parent compound and 2,4-nonsubstituted structures, and 1,3,6-triazabicyclo[3.1.0]hexanes, the latter being previously unknown. The diastereomers have been isolated for 3,3′-bi-and 1,1′-alkylenebisdiaziridines. As a whole the investigations performed in our laboratory have resulted in the simple and general methods for preparing any kind of monocyclic and fused diaziridine derivatives that give high opportunities in the study of their chemical and stereochemical properties, and applications.