Humans have two nearly identical copies of the Survival Motor Neuron (SMN) gene, SMN1 and SMN2. In spinal muscular atrophy (SMA), SMN2 is not able to compensate for the loss of SMN1 due to exclusion of exon 7. Here we describe a novel inhibitory element located immediately downstream of the 5 splice site in intron 7. We call this element intronic splicing silencer N1 (ISS-N1). Deletion of ISS-N1 promoted exon 7 inclusion in mRNAs derived from the SMN2 minigene. Underlining the dominant role of ISS-N1 in exon 7 skipping, abrogation of a number of positive cis elements was tolerated when ISS-N1 was deleted. Confirming the silencer function of ISS-N1, an antisense oligonucleotide against ISS-N1 restored exon 7 inclusion in mRNAs derived from the SMN2 minigene or from endogenous SMN2. Consistently, this oligonucleotide increased the levels of SMN protein in SMA patient-derived cells that carry only the SMN2 gene. Our findings underscore for the first time the profound impact of an evolutionarily nonconserved intronic element on SMN2 exon 7 splicing. Considering that oligonucleotides annealing to intronic sequences do not interfere with exon-junction complex formation or mRNA transport and translation, ISS-N1 provides a very specific and efficient therapeutic target for antisense oligonucleotide-mediated correction of SMN2 splicing in SMA.Alternative splicing increases the coding potential of the human genome by producing multiple proteins from a single gene (2). It is also associated with a growing number of human diseases (13,15,47). Regulation of alternative splicing is dependent upon the relative concentrations of spliceosomal and nonspliceosomal proteins, namely, serine-arginine-rich proteins (SR proteins), SR-like proteins, and heterogeneous nuclear ribonucleoproteins (hnRNPs) (16,35,43). Some of these proteins bind to pre-mRNA sequences called exonic splicing enhancers (ESEs), intronic splicing enhancers, exonic splicing silencers, and intronic splicing silencers (ISSs). Enhancers and silencers promote or suppress splice site (ss) selection, respectively. Over the last several years, methods have been developed to predict exonic cis elements (7,12,58). Analogous methods to predict intronic cis elements do not exist. Local RNA structure presents an additional level of splicing regulation. Several studies have focused on RNA structures that facilitate specific interactions during pre-mRNA splicing (3). However, the role of critical RNA structures in pre-mRNA splicing remains largely unpredictable.Spinal muscular atrophy (SMA), the second most common autosomal recessive disorder, is caused by the absence of the Survival of Motor Neuron 1 (SMN1) gene (27). SMN1 encodes a ubiquitously expressed 38-kDa SMN protein that is necessary for snRNP assembly, an essential process for cell survival (57).A nearly identical copy of the gene, SMN2, fails to compensate for the loss of SMN1 because of exon 7 skipping, producing an unstable truncated protein, SMN⌬7 (30). SMN1 and SMN2 differ by a critical C-to-T substitution at po...