2004
DOI: 10.1023/b:inrt.0000009442.34054.55
|View full text |Cite
|
Sign up to set email alerts
|

Dictionary-Based Cross-Language Information Retrieval: Learning Experiences from CLEF 2000–2002

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
22
0
1

Year Published

2005
2005
2019
2019

Publication Types

Select...
4
3
1

Relationship

2
6

Authors

Journals

citations
Cited by 39 publications
(23 citation statements)
references
References 21 publications
0
22
0
1
Order By: Relevance
“…In Finnish however, these irregularities are more common, thus rendering the conflation of various word forms into the same stem more problematic. Thus, in order to index Finnish documents, some authors suggest using a morphological analyzer (based on a dictionary) [4].…”
Section: Stopword Lists and Stemming Proceduresmentioning
confidence: 99%
“…In Finnish however, these irregularities are more common, thus rendering the conflation of various word forms into the same stem more problematic. Thus, in order to index Finnish documents, some authors suggest using a morphological analyzer (based on a dictionary) [4].…”
Section: Stopword Lists and Stemming Proceduresmentioning
confidence: 99%
“…La première consiste à traduire les documents au complet dans toutes les langues, alors que la deuxième suppose la traduction des requêtes dans la langue des documents à repérer (Oard et Ertune, 2002). Ces deux approches font généralement appel à trois types de ressources linguistiques pour la traduction : les dictionnaires bilingues ou multilingues (Hedlund et al, 2004), les systèmes de traduction automatique (TA) (Chen et Gey, 2004), et les corpus parallèles ou comparables (Braschler et Schâuble, 2000). Ces diffé-rentes ressources linguistiques ont chacune démontré leurs forces et leurs faiblesses.…”
Section: Sur La Lancée Des Campagnes D'évaluation Duunclassified
“…Machine translation and dictionary-based technique. In this technique, queries are translated using a dictionary into a language in which a document may be found (Hull and Grefenstette 1996;Oard 1998;Pirkola et al 2001;Hedlund et al 2004). An example of this approach is a multilingual search engine, called TITAN (Hayashi et al 1997), where an electronic bilingual (English-Japanese) dictionary helped Japanese users to search the web using their own language.…”
Section: Cross Language Information Retrievalmentioning
confidence: 99%