Abstract. The classical, ubiquitous, predecessor problem is to construct a data structure for a set of integers that supports fast predecessor queries. Its generalization to weighted trees, a.k.a. the weighted ancestor problem, has been extensively explored and successfully reduced to the predecessor problem. It is known that any solution for both problems with an input set from a polynomially bounded universe that preprocesses a weighted tree in O(n polylog(n)) space requires Ω(log log n) query time. Perhaps the most important and frequent application of the weighted ancestors problem is for suffix trees. It has been a long-standing open question whether the weighted ancestors problem has better bounds for suffix trees. We answer this question positively: we show that a suffix tree built for a text w[1..n] can be preprocessed using O(n) extra space, so that queries can be answered in O(1) time. Thus we improve the running times of several applications. Our improvement is based on a number of data structure tools and a periodicity-based insight into the combinatorial structure of a suffix tree.