The aerobic, Gram-positive, mesophilic
Ktedonobacteria
strains, Uno17T, SOSP1-1T, 1-9T, 1-30T and 150040T, formed mycelia of irregularly branched filaments, produced spores or sporangia, and numerous secondary metabolite biosynthetic gene clusters. The five strains grew at 15–40 °C (optimally at 30 °C) and pH 4.0–8.0 (optimally at pH 6.0–7.0), and had 7.21–12.67 Mb genomes with 49.7–53.7 mol% G+C content. They shared MK9(H2) as the major menaquinone and C16 : 1-2OH and iso-C17 : 0 as the major cellular fatty acids. Phylogenetic and phylogenomic analyses showed that Uno17T and SOSP1-9T were most closely related to members of the genus
Dictyobacter
, with 94.43–96.21 % 16S rRNA gene similarities and 72.16–81.56% genomic average nucleotide identity. The strain most closely related to SOSP1-1T and SOSP1-30T was
Ktedonobacter racemifer
SOSP1-21T, with 91.33 and 98.84 % 16S rRNA similarities, and 75.13 and 92.35% average nucleotide identities, respectively. Strain 150040T formed a distinct clade within the order
Ktedonobacterales
, showing <90.47 % 16S rRNA gene similarity to known species in this order. Based on these results, we propose: strain 150040T as Reticulibacter mediterranei gen. nov., sp. nov. (type strain 150 040T=CGMCC 1.17052T=BCRC 81202T) within the family Reticulibacteraceae fam. nov. in the order
Ktedonobacterales
; strain SOSP1-1T as Ktedonospora formicarum gen. nov., sp. nov. (type strain SOSP1-1T=CGMCC 1.17205T=BCRC 81203T) and strain SOSP1-30T as Ktedonobacter robiniae sp. nov. (type strain SOSP1-30T=CGMCC 1.17733T=BCRC 81205T) within the family
Ktedonobacteraceae
; strain Uno17T as Dictyobacter arantiisoli sp. nov. (type strain Uno17T=NBRC 113155T=BCRC 81116T); and strain SOSP1-9T as Dictyobacter formicarum sp. nov. (type strain SOSP1-9T=CGMCC 1.17206T=BCRC 81204T) within the family
Dictyobacteraceae
.