A B S T R A C T Hypothyroid rats were examined with conventional renal clearance and micropuncture techniques to elicit the mechanism and site within the nephron responsible for the increased salt and water excretion observed in these animals. When compared with age-matched control rats, a decrease in inulin clearance of 30% (P < 0.001) and in Hippuran clearance of 32% (P < 0.005) was observed in the hypothyroid rats. Absolute excretion of sodium and water was increased 3-fold (P < 0.02) and 2-fold (P < 0.025),. respectively, while fractional excretion of sodium and water was increased 4.3-fold (P < 0.02) and 2.9-fold (P < 0.05), respectively, in the hypothyroid animals.Fractional proximal reabsorption of sodium as assessed from proximal tubular fluid to plasma ratios of inulin ([TF/P]IN) was found to be decreased by 28% (P < 0.001) in the hypothyroid rats. Superficial single nephron filtration rate was reduced proportionately to the decrease in total filtration rate in the hypothyroid rats. These data indicate that the proximal tubule is one of the sites of diminished sodium and water reabsorption in the hypothyroid rat. The data also suggest that the observed decrease in glomerular filtration rate in the hypothyroid animals is not caused by a decrease in the number of functioning nephrons and that the observed increase in sodium and water excretion is not caused by a redistribution of filtrate from juxtamedullary to super-