1934
DOI: 10.1515/crll.1934.170.69
|View full text |Cite
|
Sign up to set email alerts
|

Die Anzahl der durch vier teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers.

Abstract: in Mezötur (Ungarn) und H. Reichardt in Marburg (Lahn). Der vorliegende Satz nebst Anwendung stammt vom Erstgenannten. Der ursprüngliche Beweis wurde dann vom Zweitgenannten bedeutend vereinfacht, nachdem er durch die freundliche Vermittlung von Herrn H. Hasse davon Kenntnis erhalten hatte. Über die im engeren Sinne genommene absolute Klassengruppe eines quadratischen Zahlkörpers sind bisher nur die folgenden allgemeingültigen Tatsachen bekannt: die Ordnung der Gruppe, d. h. die Klassenzahlformeln von Dirichle… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
28
0

Year Published

1970
1970
2017
2017

Publication Types

Select...
6
2
2

Relationship

0
10

Authors

Journals

citations
Cited by 75 publications
(28 citation statements)
references
References 0 publications
0
28
0
Order By: Relevance
“…From elementary work of Rédei and Reichardt [22], we know that the rank of the 4-class group of a quadratic field with discriminant ∆ can be determined from the kernel of a matrix of Legendre symbols d p , where d varies over the divisors of ∆ and p varies over the odd prime divisors of ∆. For quadratic twists of elliptic curves E with full two torsion and no rational cyclic subgroup of order four, we can also give the 2-Selmer rank as the kernel of a certain matrix of Legendre symbols.…”
Section: Equidistribution Of Legendre Symbolsmentioning
confidence: 99%
“…From elementary work of Rédei and Reichardt [22], we know that the rank of the 4-class group of a quadratic field with discriminant ∆ can be determined from the kernel of a matrix of Legendre symbols d p , where d varies over the divisors of ∆ and p varies over the odd prime divisors of ∆. For quadratic twists of elliptic curves E with full two torsion and no rational cyclic subgroup of order four, we can also give the 2-Selmer rank as the kernel of a certain matrix of Legendre symbols.…”
Section: Equidistribution Of Legendre Symbolsmentioning
confidence: 99%
“…There exists a simple method developped by Rédei and Reichardt (see [52]) to find the 4-rank of the narrow class group C D . Let D = p 1 p 2 • • • p n be the decomposition in odd prime numbers of D. The Rédei matrix M D is the n-by-n matrix over Z/2Z whose entries a ij are:…”
Section: Proof the Conjugacy Conditionmentioning
confidence: 99%
“…In the 1930's, Redei and Reichardt proved certain results on class groups of some abelian extensions of Q ( [16]). Curiously, the series of papers by Gerth do not carry a reference to the old work of Redei and Reichardt.…”
Section: Corollarymentioning
confidence: 99%