Dealcoholisation of beer has gained prominence over the last decade. A well-known procedure involves the combination of a rectification column for thermal dealcoholisation and a downstream column for aroma recovery. However, the recovery of valuable fermentation by-products is rarely performed due to limited data about the enrichment and depletion of ethanol and aromatic compounds. The influence of operating conditions on the transfer of ethanol and aroma compounds to the recovery fluid, henceforth, ‘aromawater’, has not yet been fully explored. Therefore, this study involved examining how ethanol concentration and aroma compounds in the aromawater are affected by the condenser temperature and reflux rate during thermal dealcoholisation. The aim was to obtain an aromawater having a maximum level of valuable aroma substances and a minimum level of ethanol for re-blending with non-alcoholic beer, hypothetically causing aroma intensification. An industrial system was used for sample production. Ethanol as well as higher alcohols and ester concentrations were analysed in the different material flows, and mass balances were thus compiled. Sensory analysis was performed to evaluate the beer aroma’s intensification as a sustainable industrial application. The obtained results indicate that increased condenser temperature was associated with increased aroma concentrations in the aromawater. If the temperature of the condenser’s coolant exceeded 15 °C, dealcoholisation < 0.05% abv could not be guaranteed. A higher reflux rate led to higher concentrations of fermentation by-products in the aromawater. Finally, the aroma profile of three non-alcoholic beers (0.0% abv, 0.5% abv after blending with original beer, and 0.5% abv after blending with aromawater) were evaluated. By blending, the attributes ‘estery’ and ‘flowery’ were assessed as dominant. The effect was more pronounced with aromawater than with the original beer.