Static and dynamic investigations of the dielectric properties of the liquid crystal l-(4-isothiocyanatophenyl)-2-(4-hexyl-bicyclo[2,2,2]octane-l)ethane in the nematic and isotropic phases have been carried out in the frequency region from 1 kHz to 1 GHz. Two relaxation processes, described by the Debye functions, have been observed not only in the isotropic but also in the nematic phase, when the measurements of the electric permittivity vs. frequency have been made parallel to the orientation axis of liquid crystal. These processes are related to the rotation of the permanent dipole moment around two main molecular axes. The height of the potential barrier which hinders the rotation of the liquid crystal molecule around the short axis in the ordered nematic phase and the order parameter of the liquid crystal investigated have been estimated on the basis of the relaxation time values in the nematic and isotropic phases.