Dielectric properties of poly(acrylic acid)-graft-poly(ethylene oxide) (PAA-g-PEO) aqueous solution were measured as a function of concentration and temperature over a frequency range of 40 Hz to 110 MHz. After subtracting the contribution of electrode polarization, three relaxation processes were observed at about 20 kHz, 220 kHz, and 4 MHz, and they are named low-, mid- and high-frequency relaxation, respectively. The relaxation parameters of these three relaxations (dielectric increment Δε and relaxation time τ) showed scaling relations with the polyelectrolyte concentration. The mechanisms of the three relaxations were concluded in light of the scaling theory: The relaxations of low- and mid frequency were attributed to the fluctuation of condensed counterions, while the high-frequency relaxation was ascribed to the fluctuation of free counterions. Based on the dielectric measurements of varying temperatures, the thermodynamic parameters (enthalpy change ΔH and entropy change ΔS) of the three relaxations were calculated and these relaxation processes were also discussed from the microscopic thermodynamical view. In addition, the impacts of PEO side chains on the conformation of PAA-g-PEO chains were discussed. PEO side chains greatly strengthen the hydrogen-bonding interactions between PAA-g-PEO chains, resulting in the chains overlapping at a very low concentration and the formation of a hydrogen-bonding complex. Some physicochemical parameters of PAA-g-PEO molecules were calculated, including the overlap concentration, the effective charge of the chain, the friction coefficient, and the diffusion coefficient of hydrogen counterions.