The purpose of this paper is to examine the role of molecular mobility in the recrystallization process from the amorphous state of the anticholesterol drug ezetimibe. Both the molecular dynamics and crystallization kinetics have been studied using various experimental techniques, such as broadband dielectric spectroscopy (BDS), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Our investigations have shown that ezetimibe easily recrystallizes from the disordered state, both below and above its glass transition temperature (Tg = 336 K). Moreover, we found that an only slightly elevated pressure (5 MPa) significantly accelerates the recrystallization process at T > Tg. We predict that the structural relaxation time of amorphous ezetimibe at 293 K (storage temperature) and ambient pressure is only 22 days. This result corresponds to the characteristic time, determined from XRD measurements, for amorphous ezetimibe to recrystallize during storage at Troom = 298 K. It leads to the conclusion that the molecular mobility reflected in structural relaxation of ezetimibe is mainly responsible for devitrification of this drug. Finally, we determined a relatively easy way to improve the physical stability of the drug by preparing a binary amorphous ezetimibe-Soluplus mixture. Ezetimibe in an amorphous mixture with 20 wt % Soluplus has a much better (over six times) solubility than the pure crystalline material.