Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Linear instability predictions of liquid sheets injected into a gas medium are well established in the literature. These analyses are often used in Lagrangian-Eulerian spray simulations, a prominent simulation method, to model the dynamics occurring in the near-nozzle region. In the present work, these instability predictions are re-examined by first generalizing the treatment of interfacial conditions and related assumptions with a two-phase Orr-Sommerfeld (OS) system, and second, by employing highly resolved-Volume-of-Fluid (VoF) simulations. After presenting some validation exercises for both the VoF and OS solvers, the OS predictions are compared to earlier studies from the literature leading to reasonable agreement in the limit as the boundary layer thickness tends to zero. Results from VoF simulations of liquid sheet injection are used to characterize the range of scales of the liquid structures immediately before atomization. The mean value in this range is found to be approximately two to three orders of magnitude larger than the corresponding predictions from previous studies. A two-phase mixing layer under the same physical conditions is used to examine this disparity, revealing that within the linear regime, relatively good agreement exists between the VoF and OS predicted instability mechanisms. However, the most unstable mode in the linear regime is too small to cause a fracture or atomization of the liquid sheet and hence cannot be directly responsible for the atomization. The generation of a much larger mode, which emerges well beyond the linear regime, is the one causing breakup.
Linear instability predictions of liquid sheets injected into a gas medium are well established in the literature. These analyses are often used in Lagrangian-Eulerian spray simulations, a prominent simulation method, to model the dynamics occurring in the near-nozzle region. In the present work, these instability predictions are re-examined by first generalizing the treatment of interfacial conditions and related assumptions with a two-phase Orr-Sommerfeld (OS) system, and second, by employing highly resolved-Volume-of-Fluid (VoF) simulations. After presenting some validation exercises for both the VoF and OS solvers, the OS predictions are compared to earlier studies from the literature leading to reasonable agreement in the limit as the boundary layer thickness tends to zero. Results from VoF simulations of liquid sheet injection are used to characterize the range of scales of the liquid structures immediately before atomization. The mean value in this range is found to be approximately two to three orders of magnitude larger than the corresponding predictions from previous studies. A two-phase mixing layer under the same physical conditions is used to examine this disparity, revealing that within the linear regime, relatively good agreement exists between the VoF and OS predicted instability mechanisms. However, the most unstable mode in the linear regime is too small to cause a fracture or atomization of the liquid sheet and hence cannot be directly responsible for the atomization. The generation of a much larger mode, which emerges well beyond the linear regime, is the one causing breakup.
Articles you may be interested in Performance and emission evaluation of biodiesel fueled diesel engine abetted with exhaust gas recirculation and Ni coated catalytic converter
We mainly aimed to determine how alternative liquid fuels affect the exhaust particle size distributions (PSD) emitted by a medium-speed diesel engine. The selected alternative fuels included: circulation-origin marine gas oil (MGO), the 26/74 vol. % blend of renewable naphtha and baseline low-sulfur marine light fuel oil (LFO), and kerosene. PSDs were measured by means of an engine exhaust particle sizer from the raw exhaust of a four-cylinder, turbocharged, intercooled engine. During the measurements, the engine was loaded by an alternator, the maximum power output being set at 600 kW(e) at a speed of 1000 rpm. The partial loads of 450, 300, 150 and 60 kW(e) were also used for measurements. At each load, the PSDs had a distinct peak between 20 and 100 nm regardless of fuel. Relative to the other fuels, circulation-origin MGO emitted the lowest particle numbers at several loads despite having the highest viscosity and highest density. Compared to baseline LFO and kerosene, MGO and the blend of renewable naphtha and LFO were more beneficial in terms of total particle number (TPN). Irrespective of the load or fuel, the TPN consisted mainly of particles detected above the 23 nm size category.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.