In male tephritid fruit flies of the genus Bactrocera, feeding on secondary plant compounds (sensu lato male lures = methyl eugenol, raspberry ketone and zingerone) increases male mating success. Ingested male lures alter the male pheromonal blend, normally making it more attractive to females and this is considered the primary mechanism for the enhanced mating success. However, the male lures raspberry ketone and zingerone are known, across a diverse range of other organisms, to be involved in increasing energy metabolism. If this also occurs in Bactrocera, then this may represent an additional benefit to males as courtship is metabolically expensive and lure feeding may increase a fly's short-term energy. We tested this hypothesis by performing comparative RNA-seq analysis between zingerone-fed and unfed males of Bactrocera tryoni. We also carried out behavioural assays with zingerone- and cuelure-fed males to test whether they became more active. RNA-seq analysis revealed, in zingerone-fed flies, up-regulation of 3183 genes with homologues transcripts to those known to regulate intermale aggression, pheromone synthesis, mating and accessory gland proteins, along with significant enrichment of several energy metabolic pathways and gene ontology terms. Behavioural assays show significant increases in locomotor activity, weight reduction and successful mating after mounting; all direct/indirect measures of increased activity. These results suggest that feeding on lures leads to complex physiological changes, which result in more competitive males. These results do not negate the pheromone effect, but do strongly suggest that the phytochemical-induced sexual selection is governed by both female preference and male competitive mechanisms.