The impact of macroalgae species on rumen function remains largely unexplored. This present study aimed to identify the biocompounds of the three types of marine macroalgae described: Macrocystis pyrifera (Brown), Ulva spp. (Lettuce), Mazzaella spp. (Red) and their effect on species-specific modulations of the rumen microbiome. The macroalgae were characterized using GC-MS. Twelve Rambouillet lambs were randomly assigned to one of four experimental diets (n = 3 per treatment): (a) control diet (CD); (b) CD + 5 g of Red algae; (c) CD + 5 g of Brown algae; and (d) CD + 5 g of Lettuce algae. After the lambs ended their fattening phase, they donated ruminal fluid for DNA extraction and 16S rRNA gene V3 amplicon sequencing. Results: The tagged 16S rRNA amplicon sequencing and statistical analysis revealed that the dominant ruminal bacteria shared by all four sample groups belonged to phyla Firmicutes and Bacteroidota. However, the relative abundance of these bacterial groups was markedly affected by diet composition. In animals fed with macroalgae, the fibrinolytic and cellulolytic bacteria Selenomonas was found in the highest abundance. The diversity in chemical composition among macroalgae species introduces a range of bioactive compounds, particularly VOCs like anethole, beta-himachalene, and 4-ethylphenol, which demonstrate antimicrobial and fermentation-modulating properties.