Dietary intake of potassium, vitamin E, and vitamin C emerges as the most significant predictors of cardiovascular disease risk in adults
Yue Wang,
Liyuan Han,
Shiliang Ling
et al.
Abstract:Prediction models were developed to assess the risk of cardiovascular disease (CVD) based on micronutrient intake, utilizing data from 90,167 UK Biobank participants. Four machine learning models were employed to predict CVD risk, with performance evaluation metrics including area under the receiver operating characteristic curve (AUC), accuracy, recall, specificity, and F1-score. The eXtreme Gradient Boosting (XGBoost) model was utilized to rank the importance of 11 micronutrients in cardiovascular health. Re… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.