Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Aquafeed kept at elevated temperatures and humidity can result in malondialdehyde (MDA) formation, adversely affecting aquafeed quality and triggering negative reactions in fish. To investigate the detrimental effects of dietary MDA on fish, six experimental diets with varying MDA levels (ranging from 0.03 to 17.72 mg/kg, on dietary crude lipid basis) were administered to three replicates of hybrid grouper for 8 weeks. Dietary inclusion of 4.43 mg/kg MDA significantly decreased serum complement 4 content and lysozyme activity, along with intestinal complement 3, complement 4, and immunoglobulin M contents. Furthermore, dietary inclusion of 8.86 mg/kg MDA significantly increased the activities of interleukin-1 receptor-associated kinase, ubiquitin-protein ligase, p38 mitogen-activated protein kinase, and tumor necrosis factor-α, downregulated the relative expression of Occludin but upregulated the relative expression of HSP70 in the hindgut. Additionally, the highest inclusion of MDA (17.72 mg/kg) significantly upregulated the relative levels of pro-inflammatory cytokines (IL-1β and TNF-α), caused intestinal inflammation, and damaged the intestinal microbial structure and fish fillet texture. This study demonstrated a dose-dependent response of MDA on hybrid grouper. A low dietary dose of MDA (<2.21 mg/kg) exhibited minimal impact on immune response and fillet quality. However, higher inclusion levels (≥4.43 mg/kg) impaired the intestinal health and fillet quality. Consequently, the safety limit for MDA content in the diet for hybrid grouper has been established at 4.43 mg/kg based on dietary crude lipid basis.
Aquafeed kept at elevated temperatures and humidity can result in malondialdehyde (MDA) formation, adversely affecting aquafeed quality and triggering negative reactions in fish. To investigate the detrimental effects of dietary MDA on fish, six experimental diets with varying MDA levels (ranging from 0.03 to 17.72 mg/kg, on dietary crude lipid basis) were administered to three replicates of hybrid grouper for 8 weeks. Dietary inclusion of 4.43 mg/kg MDA significantly decreased serum complement 4 content and lysozyme activity, along with intestinal complement 3, complement 4, and immunoglobulin M contents. Furthermore, dietary inclusion of 8.86 mg/kg MDA significantly increased the activities of interleukin-1 receptor-associated kinase, ubiquitin-protein ligase, p38 mitogen-activated protein kinase, and tumor necrosis factor-α, downregulated the relative expression of Occludin but upregulated the relative expression of HSP70 in the hindgut. Additionally, the highest inclusion of MDA (17.72 mg/kg) significantly upregulated the relative levels of pro-inflammatory cytokines (IL-1β and TNF-α), caused intestinal inflammation, and damaged the intestinal microbial structure and fish fillet texture. This study demonstrated a dose-dependent response of MDA on hybrid grouper. A low dietary dose of MDA (<2.21 mg/kg) exhibited minimal impact on immune response and fillet quality. However, higher inclusion levels (≥4.43 mg/kg) impaired the intestinal health and fillet quality. Consequently, the safety limit for MDA content in the diet for hybrid grouper has been established at 4.43 mg/kg based on dietary crude lipid basis.
Malondialdehyde (MDA) is a reactive carbonyl compound produced through lipid peroxidation during feed storage, which poses a significant threat to fish health. This study aimed to evaluate the effects of dietary MDA on the growth rate, gastrointestinal health, and muscle quality of striped catfish (Pangasianodon hypophthalmus). A basal diet (M0) containing 34% crude protein and 10.5% crude lipid was formulated. Each group was sprayed with malondialdehyde solution (0, 5, 10, 20, 40, and 80 mg/kg, on dietary crude lipid basis; 0, 0.53, 1.07, 2.13, 4.26, and 8.52 mg/kg, on dietary basis) before feeding, respectively. Each diet was randomly assigned to triplicates of 30 striped catfish (initial weight 31.38 g) per net cage. After 8 weeks, dietary inclusion of MDA regardless of level significantly depressed the growth rate and feed utilization. The extent of structural damage to the gastrointestinal tract increased progressively with increasing dietary MDA levels. The extent of damage to the intestinal biological barrier (intestinal microbial structure), chemical barrier (trypsin, lipase, amylase, and maltase activity), physical barrier (zonula occludent-2, occludin, claudin 7α, and claudin 12 relative expression), and immune barrier (contents of complement 4, complement 3, immunoglobulin M, and lysozyme activity) was dose-related to dietary MDA. Moreover, a linear decline in the activities of intestinal antioxidant enzymes (catalas, superoxide dismutase, et al.) and anti-inflammatory factor (transforming growth factor beta1, interleukin 10) relative expression was noted alongside an increase in dietary MDA content. In contrast, the relative expression levels of intestinal inflammatory factor (interleukin 8, transcription factor p65, tumor necrosis factor alph) relative expression displayed an opposing trend. Additionally, dietary MDA exerted a linear influence on muscle color and texture characteristics. In conclusion, high doses of MDA (5–80 mg/kg) reduced the growth performance of striped catfish, attributed to linear damage to the gastrointestinal tract, a linear decrease in antioxidant function, and the occurrence of an inflammatory response. High doses of MDA (>40 mg/kg) were observed to significantly increase dorsal muscle b-value and induce muscle yellowing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.