In two long-term feeding trials in seawater, Atlantic salmon were fed EPA + DHA in graded levels, from 1·3 to 7·4 % of fatty acids (FA, 4-24 g/kg feed) combined with approximately 10 % 18 : 3n-3, at 6 and 12°C. Dietary EPA appeared to be sufficient in all diet groups, as no differences were seen in polar lipid tissue concentrations of either the brain, retina or erythrocytes. For DHA, a reduction in tissue levels was observed with low dietary supply. Effects on brain DHA at ≤1·4 % EPA + DHA of dietary FA and retina DHA at ≤2·7 % EPA + DHA of dietary FA were only observed in fish reared at 6°C, suggesting an effect of temperature, whereas tissue levels of n-6 FA increased as a response to increased dietary n-6 FA in both the brain and the retina at both temperatures. DHA levels in erythrocytes were affected by ≤2·7 % EPA + DHA at both temperatures. Therefore, DHA appears to be the limiting n-3 FA in diets where EPA and DHA are present in the ratios found in fishmeal and fish oil. To assess the physiological significance of FA differences in erythrocytes, the osmotic resistance was tested, but it did not vary between dietary groups. In conclusion, ≤2·7 % EPA + DHA of FA (≤9 g/kg feed) is not sufficient to maintain tissue DHA status in important tissues of Atlantic salmon throughout the seawater production cycle despite the presence of dietary 18 : 3n-3, and effects may be more severe at low water temperatures.Key words: EPA: DHA: Atlantic salmon: Requirements: Brain: Retina: Erythrocytes Stagnation, or even decline, in reduction fisheries (1) , combined with increased aquaculture production, necessitates the use of raw materials other than fishmeal (FM) and fish oil (FO) in feed for Atlantic salmon (Salmo salar L.). Decreased inclusion of FM and particularly FO means decreased concentration of the long-chain n-3 fatty acids (FA) EPA (20 : 5n-3) and DHA (22 : 6n-3), whereas alternative lipid sources used in commercial salmon feeds generally provide 18 : 3n-3 (2) . We have shown in two long-term trials during the seawater-stage of Atlantic salmon that low dietary EPA + DHA levels from 1·3 to 7·4 % of total FA (4-23 g/kg feed) did not affect mortality or cause severe essential FA (EFA) deficiency symptoms, but that levels >2·7 % of FA (9 g/kg feed) were required for optimal growth (G Rosenlund, BE Torstensen, I Stubhaug, N Usman and NH Sissener, et al., unpublished results). High retention efficiency of particularly DHA (>100 %) was seen in all diet groups, with retention increasing sharply to about 200 % at the lowest dietary concentrations (G Rosenlund, BE Torstensen, I Stubhaug, N Usman and NH Sissener, unpublished results), showing that the fish both efficiently store long-chain n-3 FA and also desaturate and elongate α-linolenic acid (LNA, 18 : 3n-3) to EPA and DHA. Such a capacity for elongation and desaturation has also been shown in salmon previously (3,4) , and a study on hepatocytes showed that n-3 FA were incorporated in lipid fractions to a higher extent than n-6 FA, while EFAdeficieny increased t...