Evidence accumulated over the past several years indicates that the AMP-activated protein kinase (AMPK) 2 may be a therapeutic target for treating insulin resistance and type 2 diabetes (1). AMPK is a heterotrimeric protein formed by an ␣ subunit, which contains the catalytic activity, and by the  and ␥ regulatory subunits important in maintaining stability of the heterotrimer complex (2). AMPK belongs to a family of energy-sensing enzymes functioning as a "fuel gauge" that monitors changes in the energy status of a cell (3, 4). When activated, AMPK shuts down anabolic pathways and promotes catabolism in response to an elevated AMP/ATP ratio by down-regulating the activity of several key enzymes of intermediary metabolism (4). Two primary acute consequences of AMPK activation are 1) an increase in glucose uptake by induction of glucose 4 transporter microvesicle cytoplasm to membrane translocation and fusion and 2) an increase in fatty acid oxidation by phosphorylation and inactivation of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in fatty acid synthesis (5). Therefore, the AMPK signal pathways are thought to play a central role in the regulation of cellular glucose and lipid homeostasis. The control of AMPK activity is complex, and the classic view is that AMPK is activated allosterically by an increase in the intracellular AMP/ATP ratios and/or by the phosphorylation of threonine 172 within the ␣ subunit. Several protein kinases responsible for this phosphorylation have been identified. They include Peutz-Jeghers syndrome kinase LKB1 (LKB1) (6), and the Ca 2ϩ /calmodulin-dependent protein kinase kinase (7). Protein phosphorylation signal transduction systems are balanced and regulated delicately by both phosphatase and kinase. Since AMPK is activated by (a) protein kinase(s) at the threonine 172 residue, one can easily assume that AMPK can be regulated negatively by (a) serine/threonine phosphatase(s). To date, a wide range of physiological stressors, pharmacological agents, and hormones associated with increase in the intracellular AMP/ATP ratios have been demonstrated to activate AMPK (8). AMPK is also thought to be regulated by glycogen (9), which is the major cellular storage form of carbohydrates and thus, an additional indicator of cellular energy status. Lipids are the other major energy source for cellular metabolism. Recent studies (10, 11) in heart and liver have revealed that AMPK may be sensitive to the "lipid status" of a cell, and activation may be influenced by intracellular fatty BSA, bovine serum albumin; eNOS, endothelial nitric-oxide synthase; LKB1, Peutz-Jeghers syndrome kinase LKB1; OA, okadaic acid; ONOO Ϫ , peroxynitrite; VSMC, vascular smooth muscle cell; siRNA, short interference RNA; FFA, free fatty acid; EBM, endothelial basal medium; 2-BrP, 2-bromopalmitate; HFD, high fat diet; PP2C, protein phosphatase 2C.